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Abstract

We show that capital income inequality is large and growing fast, accounting
for a significant portion of total income inequality. We study its determinants
in a general equilibrium portfolio choice model with endogenous information
acquisition and heterogeneity across household sophistication and asset riski-
ness. The main mechanism works through endogenous household participation
in assets with different risk. The model implies capital income inequality that
increases with aggregate information technology. Quantitatively, it generates
a path of capital income inequality that matches the evolution of inequality in
the U.S.
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The rise in wealth and income inequality worldwide has been one of the most hotly

discussed topics in academic and policy circles.1 Evidence on this topic has been

largely empirical and focused on heterogeneity in wages and other labor income. In

this paper, we emphasize the role of capital income–income generated from participa-

tion in financial markets. We present new facts on the economic importance of capital

income relative to other sources of income inequality, and propose a micro-founded

economic mechanism based on information heterogeneity and technological progress

to explain the dynamics of capital income inequality. Our mechanism generates dy-

namics of financial market participation and patterns of trading activity consistent

with the data (Calvet, Campbell, and Sodini (2007), Chien, Cole, and Lustig (2011)).

We establish five robust empirical patterns using the 1989-2013 data from the

Survey of Consumer Finances (SCF). For the sample of households participating in

financial markets (about 34% of the population), we show that (i) capital income

inequality is an order of magnitude larger than is labor income inequality, and it has

been growing at a faster pace, (ii) capital income inequality accounts for a quarter of

total income inequality, (iii) capital income is an important driver of the dynamics

of total income inequality over time, (iv) capital income has a major impact on the

growth in financial wealth inequality. Finally, for the full sample of households, (v) it

is the growth in inequality within the participating group rather than the extensive

margin of participation in financial markets that drives financial wealth inequality.

We propose a mechanism, grounded in a micro-founded theory, that can account

for the growth in capital income inequality, qualitatively and quantitatively. The the-

ory is cast as a noisy rational expectations portfolio choice model with endogenous

information acquisition subject to capacity constraints, in the spirit of Van Nieuwer-

burgh and Veldkamp (2009, 2010), and Kacperczyk, Van Nieuwerburgh, and Veld-

kamp (2015). We generalize these setups by allowing for a nontrivial heterogeneity

1For a summary, see Piketty and Saez (2003); Atkinson, Piketty, and Saez (2011). A compre-
hensive discussion is also offered in the 2013 Summer issue of the Journal Economic Perspectives
and in Piketty (2014).
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across investors and assets. First, all investors are endowed with a heterogeneous but

positive amount of capacity for processing information. Hence, everyone in the econ-

omy learns about asset payoffs, but to different degrees: sophisticated investors have

greater capacity to process information than do unsophisticated ones. This feature of

the model is important to explain how aggregate capacity growth affects inequality

through its effects on investment behavior of different investor types. Second, finan-

cial assets differ in their fundamental volatilities and thus their relative potential to

generate superior returns.

Based on the observed assets characteristics, investors decide which assets to learn

about, how much information about them to process, and how much to invest. Both

the assets that are being learned about and the mass of investors learning about them

are determined endogenously. This endogeneity is crucial for generating a quantita-

tively meaningful growth in inequality and allows us to test our mechanism against

asset-level micro data.

The main implication of our information friction is that in the presence of ini-

tial investor heterogeneity, symmetric growth in capacity, interpreted as a general

progress in information-processing technologies, disproportionately benefits sophisti-

cated households and leads to a growing capital income inequality. This result reflects

two characteristics of learning in equilibrium. First, learning exhibits preference for

volatility: All else equal, individuals choose to learn about volatile assets. Second,

there is strategic substitutability in learning: The value of learning diminishes as more

individuals learn about a given asset, through a general equilibrium effect on prices.

Less sophisticated individuals are more responsive to the general equilibrium price

effects because their information rents are lower. As a result, symmetric growth in

capacity leads to an expansion of sophisticated ownership across asset classes, start-

ing with the most volatile and continuing to lower volatility assets. Simultaneously,

unsophisticated individuals retrench from risky assets and hold safer assets. In terms

of the aggregate moments, growth in aggregate capacity leads to lower average market
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returns and higher asset turnover. These results play an important role in that they

cut against plausible alternative explanations of the observed growth in inequality,

such as models with heterogeneity in risk aversion or trading costs.

We quantify the implications of our information friction on capital income inequal-

ity in three steps. We consider three types of investors: institutional, sophisticated

retail investors and unsophisticated retail investors. We then parameterize the model

using U.S. micro-level data on stocks from CRSP and aggregate retail and institu-

tional portfolios from Thomson Reuters for the period 1989–2000, combined with

household-level data from the Survey of Consumer Finances. This allows us to pin

down the investment environment, including the asset payoffs and risk aversion, as

well as heterogeneity in sophistication between investors. Second, we simulate the

model using the time series on institutional ownership to pin down the time series

of aggregate information capacity in the model, with growth in capacity affecting all

agents in a symmetric way. This gives us a time series for capital income inequality

between the two retail investors modeled by us. Third, we use the second half of the

micro-level stock market data (from 2001 to 2012) to test the information mechanism

in the time series.

In our analysis of capital income inequality, we link households’ initial sophistica-

tion to their initial total wealth. Intuitively, when information about financial assets

is costly to process, individuals with different access to financial resources differ in

terms of their access to information about financial investments. We take this point

as a guiding principle in mapping households into two different wealth groups in the

SCF. Specifically, for households that participate in financial markets, we use the

average total wealth of the 10% wealthiest individuals relative to that of the 50%

poorest individuals in 1989 as a proxy for initial relative sophistication. This view of

wealth as proxy for sophistication is supported by empirical micro-evidence literature

on the strong connection between measures of portfolio sophistication and wealth
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(Calvet, Campbell, and Sodini (2009b), Vissing-Jorgensen (2004)).2

The model generates capital income inequality growth of 121%, compared with

111% in the data. The main force behind the inequality is that unsophisticated

individuals shift their portfolio allocations towards safe, low-volatility assets. This

rebalancing effect is quantitatively the most important force in the model: In a one-

asset setting, capital income inequality growth is reduced by more than 80%. It

is also consistent with empirical evidence from the U.S. Over time, unsophisticated

households increase their share of liquid, money-like instruments and shift away from

direct stock ownership and ownership of intermediated products, such as actively

managed equity mutual funds.3

To test our economic mechanism, we look at micro-level evidence on holdings of

retail and active institutional portfolios. First, institutional portfolios on average

earn rates of return that are approximately 3 percentage points per year higher (1.7-

2.2 percent in the model). Second, institutional portfolios in the data have higher

ownership shares of equities first for the most volatile stocks and subsequently for

stocks with medium and low volatility. Similar result is predicted by our model when

we introduce positive shocks to aggregate information capacity. Third, the data

exhibit asset turnover that is increasing over time, and increasing in the cross section

of stocks sorted by past volatility, which again is a prediction of our model with

aggregate capacity growth. We argue that these micro-level patterns are a specific

feature of our information friction and would be hard to reconcile with other frictions

or sources of heterogeneity.

Intuitively, three forces in the model guide these results. First, more sophisti-

cated investors adjust, state by state, their portfolio holdings better towards assets

with higher realized excess returns because they receive higher-precision signals about

payoffs. This force drives the difference in returns and asset turnover across investor

2For a theoretical model showing how such a relationship can arise in equilibrium, see Arrow
(1987).

3More broadly, this pattern matches evidence of a growing retrenchment of retail investors from
trading and stock market ownership in general (Stambaugh (2014)).
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types. Second, rents from learning are higher for higher volatility assets. As capacity

expands and rents from high volatility assets fall in equilibrium, investors expand

learning to lower volatility assets. Third, more sophisticated investors are better at

capturing informational rents from the increase in aggregate capacity. Thus, they

increase more than proportionally their per-capita share in every risky asset they

learn about. This has a general equilibrium effect through prices, which pushes un-

sophisticated individuals to reduce their exposure to assets with large sophisticated

ownership. The second and the third forces are jointly responsible for the pattern

of expansion of institutional ownership in response to growth in aggregate capacity,

which in turn drives asset turnover in the time series and the cross section of assets.

Related literature Our paper spans three strands of literature: household finance,

rational inattention, and income inequality. While some of our contributions are

specific to each individual stream, a unique feature of our work is that we integrate

the streams into one unified framework.

Within the household finance literature, we build upon the empirical literature

on limited capital market participation, growing institutional ownership, household

trading decisions, and investor sophistication4. While the majority of the studies at-

tribute limited participation rates to differences in participation costs5 or preferences,

we relate investment decisions to differential access to information across households.

In regard to the endogenous information choice, our work is broadly related to Sims

(1998, 2003). More germane to our application are the models of costly information

of Van Nieuwerburgh and Veldkamp (2009, 2010), Mondria (2010), and Kacperczyk,

Van Nieuwerburgh, and Veldkamp (2015), from which we depart by exploring the role

of asset and investor heterogeneity both analytically and quantitatively. Allowing

4Studies on participation include Mankiw and Zeldes (1991) and Ameriks and Zeldes (2001).
Gompers and Metrick (2001) show trends in ownership; Barber and Odean (2001), Campbell (2006),
Calvet, Campbell, and Sodini (2009b, 2009a), Guiso and Sodini (2012) analyze household trading de-
cisions; Barber and Odean (2000, 2009), Calvet, Campbell, and Sodini (2007), Grinblatt, Keloharju,
and Linnainmaa (2012) examine investor sophistication.

5See Gomes and Michaelides (2005), Favilukis (2013).
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for such non-trivial heterogeneity produces very different implications for portfolio

decisions, asset prices, and the evolution of inequality over time.

The literature on income inequality dates back to the seminal work by Kuznets

(1953).6 In contrast to our paper, a vast majority of that literature focuses on total

income or income earned in labor market,7 and does not relate inequality to hetero-

geneity in the informational sophistication of households.

The closest paper in spirit to ours is Arrow (1987), who also considers information

differences to explain the income gap. However, he does not consider endogenous

information acquisition and is not a general equilibrium analysis of the economy with

heterogeneously informed agents and many assets. Both of these elements are crucial

for our results, especially to establish the validity of our mechanism. Another related

paper is Peress (2004), who examines the role of wealth and decreasing absolute risk

aversion in investors’ information acquisition and participation in one risky asset.

However, his focus is not on capital income inequality. Moreover, we show that

heterogeneity across assets and agents is a crucial component to quantitatively capture

the evolution of capital income inequality and its underlying economic mechanism.

Section 1 establishes five facts regarding income inequality that motivate our anal-

ysis. Section 2 presents the theory. Section 3 derives analytic predictions, which we

subsequently take to the data. Section 4 presents the quantitative results about the

model parameterization and the evolution of capital income inequality, and tests the

mechanism using a set of dynamic predictions. Section 5 concludes. All proofs and

derivations are in the Appendix and the Online Appendix.

6It has been subsequently advanced by the work of Piketty (2003), Piketty and Saez (2003),
Autor, Katz, and Kearney (2006), Atkinson, Piketty, and Saez (2011), and Alvaredo, Atkinson,
Piketty, and Saez (2013)

7A notable exception is a recent paper by Pástor and Veronesi (2015) who study theoretically
a link between redistributive taxes, entrepreneurship, and income inequality. Their model takes
advantage of heterogeneity in skill and risk aversion and is not information based.
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1 Motivating Facts

This section presents a set of facts on capital income inequality that motivate our

study, based on the data from the Survey of Consumer Finances (SCF) from 1989

to 2013. The SCF is a standard testing ground for questions related to household

finance and thus a reliable source for our purpose.8

Since we seek to understand the role of financial markets in generating growth in

inequality, we restrict our sample to households that participate in such markets. We

define as participants households that report holding stocks, bonds, mutual funds,

receiving dividends, or having a brokerage account. On average, 34% of households

participate, ranging between 32% in 1989, a 40% high in 2001, and 28% low in 2013.9

Capital income is income from dividends, taxable and non-taxable interest income,

and realized capital gains.10 During the period 1989-2013, capital income represents

an average 14% of total income for households that participate in financial markets.

Labor income (income from wages and salaries) represents 56% of total income, while

other income makes up the remaining 30%.11 In terms of its dynamics, the share of

capital income in total income falls in the second wave of the SCF survey, from 19.2%

in 1989 to 13.5% in 1992, and remains stable after, reaching a value of 13.7% in 2013.

We measure capital income inequality in the participating group in two steps. We

first sort the sample of participants by the level of total wealth. Next, we calculate

8For example, Saez and Zucman (2014) show that SCF trends in household wealth at the very
top of the wealth distribution are consistent with those obtained from detailed tax records.

9As a robustness check, we also consider a broader measure of participation that includes all
households with equity in a retirement account. This inclusion raises the participation rates to 35%
in 1989, 44% in 2001, and 37% in 2013. All relevant conclusions remain unchanged.

10Our definition of capital income is typical in the literature (see, for example, Bucks et al.
(2006), Kennickell (2006), Bucks et al. (2009), Alvaredo et al. (2013). The Online Appendix
provides detailed definitions of all variables.

11Other income includes social security and other pension income, income from professional prac-
tice, business or limited partnerships, income from net rent, royalties, trusts and investment in
business, unemployment benefits, child support, alimony and income from welfare assistance pro-
grams. In the literature on labor income inequality, business income is sometimes included in labor
income. The split between labor and other income does not impact our calculations regarding the
relative importance of capital income.
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inequality as a ratio of income for the top 10% of participants and the bottom 50%.

Fact 1: Capital Income Inequality is Large and Growing Fast Panel (a) of

Figure 1 shows that in the cross-section, capital income is an order of magnitude more

unequal than either labor or total income. For example, in 1989, the capital income

of the top 10% of participants was 61 times larger than that of the bottom 50% of

participants. This ratio increased to 129 in 2013. By comparison, the corresponding

ratio for wage income was 3.3 in 1989 and 5.6 in 2013. To compare the dynamics of

inequality across income sources, we normalize the inequality of each income measure

to 1 in 1989, and plot growth rates for capital, labor, and total income inequality

in Panel (b) of Figure 1. Capital income inequality doubled over the sample period,

outpacing the growth in labor income inequality, which increased 1.5 times.
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Figure 1: Income inequality growth in the SCF. Inequality is the ratio of the top 10%
and the bottom 50% (in terms of total wealth) of participants in financial markets.

Fact 2: Capital Income Inequality Accounts for 25% of Total Income In-

equality To understand the relative importance of various components of total

income inequality, in equation (1) below, we decompose total income inequality in

period t (denoted T10t/T50t) into shares coming from capital income (denoted by K),

labor income (denoted by W ), and other (residual) income (denoted by R). This
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process integrates two empirical drivers of inequality: the evolution of shares and the

evolution of inequality within each income source.

T10t

T50t

=
K10t

K50t

K50t

T50t

+
W10t

W50t

W50t

T50t

+
R10t

R50t

R50t

T50t

(1)

Figure 2 plots the contribution at time t of each of the components of total income

to the inequality in total income. On average, 26% of the total income inequality in

each year is attributable to capital income. Even though the contribution of capital

income to total income inequality has been declining somewhat, from an average of

30% in the first half of the sample (roughly the 1990s) to 23% in the second half of

the sample, it still constitutes an economically significant number.
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Figure 2: Decomposition of total income inequality in the SCF into contributions
from capital income, labor income, and other income.

Fact 3: Capital Income is an Important Driver of Total Inequality Dy-

namics The dynamics of capital income inequality also significantly contribute to

the dynamics of total inequality. Panel (b) of Figure 2 presents a decomposition of

the change in total income inequality into changes attributable to capital, labor, and

other income. We find that capital income is the biggest contributor to total income

inequality–its contribution is on average 2.2 times greater than that of the sum of

wage and other income.
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Fact 4: Capital Income Drives Financial Wealth Inequality To assess the

importance of capital income as a driving force of financial wealth inequality, we

generate the counterfactual financial wealth obtained from accruing capital income

only.12 Specifically, starting from 1989, for each wealth decile in the SCF we derive a

hypothetical wealth level for subsequent years by accumulating the reported capital

income.13
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Figure 3: Financial Wealth in the SCF: Actual and counterfactual due to accrual of
capital income only.

Figure 3 shows the time series for actual and counterfactual financial wealth in-

equality. The two series are remarkably close, which suggests an important role for

capital income in the evolution of financial wealth inequality.14 Based on Figure 3 it

seems that looking at past capital income realizations may be sufficient to explain the

evolution of financial wealth, without resorting to mechanisms that involve savings

rates from other income sources. Still, we treat this evidence as suggestive, since our

exercise imposes a panel interpretation on a repeated cross-section.

12Financial wealth is the sum of holdings of assets that generate capital income, such as directly
held stocks, bonds, and non money market funds, plus the cash value of life insurance, retirement
accounts, CDs, other financial assets such as future royalties, annuities, trusts, or managed accounts,
plus the value of liquid assets, such as checking and savings accounts, cash, and money accounts.

13For example, the counterfactual financial wealth level in 1995 is equal to the actual financial
wealth in 1989 plus 3 times the capital income reported in the prior survey years (in this case, 1989
and 1992).

14By construction, the two wealth levels are identical in 1989, so the figure also implies that the
counterfactual levels of financial wealth for each group are very close to those in the data.
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Fact 5: Participation Does Not Drive Financial Wealth Inequality We

study the role that the extensive (participation) and the intensive (investment) mar-

gins play in generating growth in financial wealth inequality. Starting in 1989, we

plot two financial wealth time series: inequality between non-participants in financial

markets and the bottom 50% of the wealth distribution of participants (the extensive

margin), and inequality between the bottom 50% and the top 10% of the wealth dis-

tribution of participants. Figure 4 plots the two series, normalized to 1 in 1989. As is

clear from the figure, there is no significant effect of the participation margin; in turn,

inequality has grown substantially for households within the participating group.
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Figure 4: Financial wealth inequality in the SCF: Market participants are sorted in
terms of their total wealth.

Overall, our evidence points to capital income being a significant component of

total income, and to capital income being an important factor in the growth of both

financial wealth and total income inequality. Further analysis of the cross-sectional

differences between individuals, discussed in detail in the Online Appendix, shows

that higher-wealth individuals, such as the top participants, use more sophisticated

investment instruments and invest a lower proportion of their assets in money-like

instruments. This suggest access to more sophisticated investment strategies which

may generate divergence in capital income over time. Next, we set out to understand

the theoretical underpinnings of this evolution of capital income inequality.
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2 Theoretical Framework

A continuum of atomless investors of mass one, indexed by j, solve a sequence of

static portfolio choice problems, so as to maximize mean-variance utility over wealth

Wj in each period, given common risk aversion coefficient ρ > 0. The financial

market consists of one risk-free asset, with price normalized to 1 and payoff r, and

n > 1 risky assets, indexed by i, with prices pi, and independent payoffs zi = z + εi,

with εi ∼ N (0, σ2
i ). The risk-free asset has unlimited supply, and each risky asset

has fixed supply, x. For each risky asset, non-optimizing “noise traders” trade for

reasons orthogonal to prices and payoffs (e.g., liquidity, hedging, or life-cycle reasons),

such that the net supply available to the (optimizing) investors is xi = x + νi, with

νi ∼ N (0, σ2
x), independent of payoffs and across assets.15

Prior to making their portfolio decisions investors choose to obtain information

about some or all of the risky assets. Mass λ ∈ (0, 1) of investors, labeled sophis-

ticated, have high capacity for processing information, K1, and mass 1 − λ, labeled

unsophisticated, have low capacity, K2, with 0 < K2 < K1 <∞. Information is ob-

tained in the form of endogenously designed signals on asset payoffs subject to this

capacity limit. The signal choice is modeled using entropy reduction as a measure of

the amount of acquired information (Sims (2003)).

2.1 Investor Optimization

Optimization occurs in two stages. In the first stage, investors solve their informa-

tion acquisition problem: they choose the distribution of signals to receive in order

to maximize expected utility, subject to their information capacity. In the second

stage, given the signals they receive, investors update their beliefs about the payoffs

and choose their portfolio holdings to maximize utility. We first describe the optimal

15For simplicity, we introduce heterogeneity only in the volatility of payoffs, although the model
can easily accommodate heterogeneity in supply and in mean payoffs.
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portfolio choice in the second stage, for a given signal choice. We then solve for the

ex-ante optimal signal choice.

Portfolio Choice Given equilibrium prices and posterior beliefs, each investor

solves

Uj = max
{qji}ni=1

Ej (Wj)−
ρ

2
Vj (Wj) (2)

s.t. Wj = r

(
W0j −

n∑
i=1

qjipi

)
+

n∑
i=1

qjizi, (3)

where Ej and Vj denote the mean and variance conditional on investor j’s information

set, and W0j is initial wealth. Optimal portfolio holdings are given by

qji =
µ̂ji − rpi
ρσ̂2

ji

, (4)

where µ̂ji and σ̂2
ji are the mean and variance of investor j’s posterior beliefs about

payoff zi.

Information Acquisition Choice Each investor can choose to receive a separate

signal sji on each of the asset payoffs, zi. Given the optimal portfolio choice, each

investor chooses the optimal distribution of signals to maximize the ex-ante expected

utility, E0j [Uj]. The choice of the vector of signals sj = (sj1, ...sjn) about the vector of

payoffs z = (z1, ..., zn), is subject to an information capacity constraint, I (z; sj) ≤ Kj,

where I (z; sj) denotes the Shannon (1948) mutual information, quantifying the in-

formation that the vector of signals conveys about the vector of payoffs. The capacity

constraint imposes a limit on the amount of uncertainty reduction that the signals

can achieve. Since perfect information requires infinite capacity, each investor faces

some residual uncertainty about the realized payoffs.

For tractability, we make the following assumption about the signal structure:
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Assumption 1. The signals sji are independent across assets and investors.

Assumption 1 implies that the total quantity of information obtained by an in-

vestor can be expressed as a sum of the quantities of information obtained for each

asset.16 The information constraint becomes
∑n

i=1 I (zi; sji) ≤ Kj, where I (zi; sji)

measures the information conveyed by the signal sji about the payoff of asset i.

Investors decompose each payoff into a lower-entropy signal component and a

residual component that represents the information lost through this compression:

zi = sji + δji. For tractability, we introduce the following additional assumption:

Assumption 2. For each asset and investor, the signal sji is independent of the data

loss δji.

Since zi is normally distributed, Assumption 2 implies that sji and δji are also nor-

mally distributed. By Cramer’s Theorem, sji ∼ N
(
z, σ2

sji

)
and δji ∼ N

(
0, σ2

δji

)
with

σ2
i = σ2

sji + σ2
δji.

17 Hence, posterior beliefs are normally distributed random variables,

independent across assets, with mean µ̂ji = sji and variance σ̂2
ji = σ2

δji. Intuitively, a

perfectly precise signal results in no information loss, such that posterior uncertainty

is zero. Conversely, a signal that consumes no information capacity discards all in-

formation about the realized payoff, returning only the mean payoff, z, and leaving

an investor’s posterior uncertainty equal to her prior uncertainty.

Using this signal structure and the resulting distribution of expected excess re-

turns, the investor’s information problem becomes choosing the variance of posterior

beliefs to solve

max
{σ̂2

ji}ni=1

n∑
i=1

Gi
σ2
i

σ̂2
ji

s.t.

n∏
i=1

σ2
i

σ̂2
ji

≤ e2Kj , (5)

where Gi represents the equilibrium utility gain from learning about asset i.18 This

16Assumption 1 is common in the literature. Allowing for potentially correlated signals requires
a numerical approach, and is beyond the scope of this paper.

17In general, the optimal signal structure may require correlation between the signal and the data
loss, but Assumption 2 maintains analytical tractability.

18The investor’s objective omits terms that do not affect the optimization. See Appendix for
detailed derivations.
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gain is a function of the distribution of expected excess returns only, and hence it is

common across investor types and taken as given by each investor.

Lemma 1. The solution to the maximization problem (5) is a corner: each investor

allocates her entire capacity to learning about a single asset from the set of assets

with maximal utility gains. The posterior beliefs of an investor j learning about asset

lj ∈ arg maxiGi, are normally distributed, with mean and variance given by

µ̂ji =

sji if i = lj

z if i 6= lj

and σ̂2
ji =

e
−2Kjσ2

i if i = lj

σ2
i if i 6= lj.

(6)

Conditional on the realized payoff zi, the signal is normally distributed with mean

E (sji|zi) = z +
(
1− e−2Kj

)
εi, and variance V (sji|zi) =

(
1− e−2Kj

)
e−2Kjσ2

i .

The linear objective function and the convex constraint imply that each investor

specializes, learning about a single asset. She always picks an asset with the highest

gain Gi and hence all assets that are learned about in equilibrium will have the same

gains. Which assets these are is determined in equilibrium.

2.2 Equilibrium

Equilibrium Prices Given the solution to each investor’s portfolio and information

problem, equilibrium prices are linear combinations of the shocks.

Lemma 2. The price of asset i is given by pi = ai + biεi − ciνi, with

ai =
1

r

[
z − ρσ2

i x

(1 + Φi)

]
, bi =

Φi

r (1 + Φi)
, ci =

ρσ2
i

r (1 + Φi)
, (7)

where Φi ≡ m1i

(
e2K1 − 1

)
+ m2i

(
e2K2 − 1

)
measures the information capacity allo-

cated to learning about asset i in equilibrium, m1i ∈ [0, λ] is the mass of sophisticated

investors who choose to learn about asset i, and m2i ∈ [0, 1− λ] is the mass of un-
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sophisticated investors who choose to learn about asset i, with
∑n

i=1 m1i = λ and∑n
i=1 m2i = 1− λ.

The price of an asset reflects the asset’s payoff and the supply shocks, with relative

importance determined by the mass of investors learning about the asset. If there is

no information capacity in the economy (K1 = K2 = 0), or for assets that are not

learned about (m1i = m2i = 0), the price only reflects the supply shock νi. As the

capacity allocated to an asset increases, the asset’s price co-moves more strongly with

the underlying payoff (ci decreases and bi increases, though at a decreasing rate). In

the limit, as Kj →∞, the price approaches the discounted realized payoff, zi/r, and

the supply shock becomes irrelevant for price determination.

Equilibrium Learning Using equilibrium prices, we determine the assets that are

learned about and the mass of investors learning about each asset. Without loss of

generality, let assets be ordered such that σi > σi+1 for all i ∈ {1, ..., n− 1}. Let

ξi ≡ σ2
i (σ2

x + x2) summarize the properties of asset i. Then the gain from learning

about asset i becomes19

Gi =
1 + ρ2ξi

(1 + Φi)
2 . (8)

Lemma 3. The allocation of information capacity across assets, {Φi}ni=1, is uniquely

pinned down by equating the gains from learning among all assets that are learned

about, and by ensuring that all assets not learned about have strictly lower gains:

Gi = max
h∈{1,...,n}

Gh, ∀i ∈ {1, ..., k} , (9)

Gi < max
h∈{1,...,n}

Gh, ∀i ∈ {k + 1, ..., n} , (10)

where k denotes the endogenous number of assets with strictly positive learning mass.

Let mi denote the total mass of investors learning about asset i and let ci1 ≡√
1+ρ2ξi
1+ρ2ξ1

≤ 1 denote the exogenous value of learning about asset i relative to asset

19See Appendix for derivation.
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1 (excluding strategic substitutability effects). In a symmetric equilibrium in which

m1i = λmi and m2i = (1− λ)mi, the masses {mi}ni=1 are given by

mi =
ci1
Ck

+
1

φ

(
kci1
Ck
− 1

)
, ∀i ∈ {1, ..., k} , (11)

mi = 0, ∀i ∈ {k + 1, ..., n} , (12)

where Ck ≡
∑k

i=1 ci1, and φ ≡ λ
(
e2K1 − 1

)
+ (1− λ)

(
e2K2 − 1

)
is a measure of the

total capacity for processing information available in the economy, with Φi = φmi.

The model uniquely pins down the total capacity allocated to each asset, Φi, but it

does not separately pin down m1i and m2i. Since the asset-specific gain from learning

is the same for both types of investors, we assume that the participation of sophis-

ticated and unsophisticated investors in learning about each asset is proportional to

their mass in the population. In turn, this implies a unique set of masses {mi}ni=1.

Learning in the model exhibits preference for volatility (high σ2
i ) and strategic

substitutability (low mi). Furthermore, the value of learning about an asset also

falls with the aggregate amount of information in the market (φ), since higher capac-

ity overall increases the co-movement between prices and payoffs, thereby reducing

expected excess returns:

∂Gi

∂σ2
i

> 0,
∂Gi

∂mi

< 0,
∂Gi

∂φ
< 0.

For sufficiently low information capacity, all investors learn about the same asset.

Since the gains from learning are increasing in volatility, the asset learned about is

the most volatile asset: for φ ∈ (0, φ1], m1 = 1 and mi = 0 for all i > 1, where

φ1 ≡

√
1 + ρ2ξ1

1 + ρ2ξ2

− 1. (13)

This threshold endogenizes single-asset learning as an optimal outcome for low enough
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information capacity relative to asset dispersion. As the overall capacity in the econ-

omy increases above this threshold, strategic substitutability in learning pushes some

investors to start learning about less volatile assets. For sufficiently high information

capacity, or alternatively, for low enough dispersion in assets volatilities, all assets

are actively traded, thus endogenizing the assumption employed in models with ex-

ogenous signals.

We define the thresholds for learning as follows:

Definition 1. Let φk be such that for any φ ≤ φk, at most the first k assets are

actively traded (learned about) in equilibrium, while for φ > φk, at least the first

k + 1 assets are actively traded in equilibrium.

Lemma 3 implies that the threshold values of aggregate information capacity are

monotonic: 0 < φ1 < φ2 < ... < φn−1. Figure 5 shows how growth in the economy’s in-

formation capacity changes the mass of investors learning about each asset across the

volatility spectrum by changing the equilibrium gains from learning. In the presence

of assets heterogeneity, even if many assets are learned about, there is heterogeneity

in the information capacity allocated to each of the actively traded assets. Since the

equilibrium gain is increasing in volatility and decreasing in mi, the mass of investors

learning about each asset is increasing in volatility. In turn, this heterogeneity has

implications for holdings, returns, and turnover in the cross-section of assets.20

We further characterize learning in response to variation in investor capacities.

Lemma 4. Let φ ∈ (φk−1, φk] such that k > 1 assets are actively traded. Consider

an increase in φ such that k′ ≥ k is the new number of actively traded assets.

(i) There exists a threshold asset ı̄ < k′, such that mi is strictly decreasing in φ for

all i ∈ {1, ..., ı̄− 1} and strictly increasing in φ for all i ∈ {ı̄ + 1, ..., k′}.
20One could also let the degree of dispersion in asset payoff volatilities vary, which will imply that

learning also varies, with periods with high dispersion being characterized by more concentrated
learning, and periods with low dispersion characterized by more diversified learning (and hence
portfolios).
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Figure 5: The evolution of masses and gains from learning as aggregate capacity is
increased. φ(k) indicates the level of aggregate capacity for which k assets are learned
about in equilibrium. On the x-axis, assets are ordered from most (1) to least (10)
volatile.

(ii) The quantity (φmi) is increasing in φ for all assets i ∈ {1, ..., k′}.

(iii) For an increase in φ generated by a symmetric growth, K ′j = (1 + γ)Kj, with

γ ∈ (0, 1), the quantity mi(e
2Kj − 1), j ∈ {1, 2}, is increasing in Kj at an

increasing rate, for i ∈ {ı̄+ 1, ..., k′}. For i ∈ {1, ..., ı̄}, mi

(
e2K1 − 1

)
grows

while mi

(
e2K2 − 1

)
grows by less, or even falls if capacity dispersion is large

enough.

Lemma 4 shows the diversification effect. First, as the amount of aggregate capac-

ity increases, the mass of investors learning about the most volatile assets decreases,

as some investors shift to learning about less volatile assets. Nevertheless, the total

amount of capacity allocated to each asset (φmi) strictly increases, to ensure that

gains continue to be equated for all assets that are actively traded. This increase

means that investment in all assets, including those that have now become less pop-

ular, is based on more informative signals. Finally, the increase in aggregate capacity

benefits the sophisticated group disproportionately: this group allocates more capacity

to each asset relative to the unsophisticated group, which in turn generates asym-

metry in investment patterns. In Section 3, we use these results to derive analytic
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predictions on the patterns of investment in response to changes in capacity.

3 Model Predictions

Heterogeneous Capacity Our first set of analytic results identify the channels

through which heterogeneity in information capacity drives capital income inequality

in the cross-section, by generating differences in portfolio sizes and compositions both

on average and state by state.

Let q1i and q2i denote the average per-capita holdings of asset i for sophisticated

and unsophisticated investors, respectively,

q1i =

(
zi − rpi
ρσ2

i

)
+mi

(
e2K1 − 1

)(zi − rpi
ρσ2

i

)
, (14)

with q2i defined analogously. Per-capita holdings are given by the quantity that would

be held under the investors’ prior beliefs, with no additional information about the

realized payoffs, plus a quantity that is increasing in the realized excess return. The

weight on the realized excess return is asset and investor specific, and it captures the

amount of information capacity allocated to this asset by this investor group. For

actively traded assets, heterogeneity in capacities generates differences in ownership

across investor types at the asset level:

q1i − q2i = mi

(
e2K1 − e2K2

)(zi − rpi
ρσ2

i

)
. (15)

Integrating over the realizations of the state (zi, xi), the expected per-capita ownership

difference, as a share of the supply of each asset, is also asset specific,

E [q1i − q2i]

x
=
(
e2K1 − e2K2

) mi

1 + φmi

. (16)

Hence, the portfolio of the sophisticated investor is not simply a scaled up version of
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the unsophisticated portfolio. Rather, the portfolio weights within the class of risky

assets also differ across the two investor types.

Proposition 1 (Ownership). Let K1 > K2 and φk−1 ≤ φ < φk, such that the first

k > 1 assets are actively traded in equilibrium. Then, for i ∈ {1, ..., k},

(i) E [q1i − q2i] /x > 0;

(ii) E [q1i − q2i] /x is increasing in E [zi − rpi];

(iii) q1i − q2i is increasing in zi − rpi.

The average sophisticated investor (i) holds a larger portfolio of risky assets on

average, (ii) tilts her portfolio towards assets with higher expected excess returns,

and (iii) adjusts ownership, state by state, towards assets with higher realized excess

returns. These results identify the channels through which sophisticated investors

generate relatively higher capital income, asset by asset, both on average and state

by state.

Next, let π1i and π2i denote the capital income per capita from trading asset i, for

sophisticated and unsophisticated investors, respectively, with π1i ≡ q1i (zi − rpi) and

π2i ≡ q2i (zi − rpi). For actively traded assets, heterogeneity in ownership generates

heterogeneity in capital income across investor types at the asset level:

π1i − π2i = mi

(
e2K1 − e2K2

) (zi − rpi)2

ρσ2
i

. (17)

Integrating over the realizations of (zi, xi), the expected capital income difference is

E [π1i − π2i] =
1

ρ
mi

(
e2K1 − e2K2

)
Gi, (18)

where Gi is the gain from learning about asset i.

Proposition 2 (Capital Income). Let K1 > K2 and φk−1 ≤ φ < φk, such that the

first k > 1 assets are actively traded in equilibrium. Then, for i ∈ {1, ..., k},

(i) π1i− π2i ≥ 0, with strict inequality in states with non-zero realized excess returns;
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(ii) E [π1i − π2i] is increasing in asset volatility σi.

The average sophisticated investor realizes larger profits in states with positive

excess returns, and incurs smaller losses in states with negative excess returns, because

her holdings co-move more strongly with the realized state. Moreover, the biggest

difference in profits, on average, comes from investment in the more volatile, higher

expected excess return assets.

Larger Capacity Dispersion Our second set of analytic results show that in-

creased dispersion in capacities implies further polarization in holdings, which in

turn leads to a growing capital income polarization. Intuitively, greater dispersion

in information capacity implies that sophisticated investors receive relatively higher-

quality signals about the fundamental payoffs, which enables them to respond more

strongly to realized state.

Proposition 3 (Capacity Dispersion). Let K1 > K2 and φk−1 ≤ φ < φk, such

that the first k > 1 assets are actively traded in equilibrium. Consider an increase in

capacity dispersion of the form K ′1 = K1 + ∆1 > K1, K ′2 = K2 −∆2 < K2, with ∆1

and ∆2 chosen such that the total information capacity φ remains unchanged. Then,

for i ∈ {1, ..., k},

(i) Asset prices and excess returns remain unchanged.

(ii) The difference in ownership shares (q1i − q2i) /x increases.

(iii) Capital income gets more polarized as π1i/π2i increases state by state.

Increasing the level of capacity dispersion while leaving the aggregate measure

of information in the economy unchanged, does not affect equilibrium prices, since

keeping φ unchanged implies that both the number of assets learned about and the

mass of investors learning about each asset remain unchanged. Hence the adjustment

reflects a pure transfer of ownership from the relatively unsophisticated investors

(who now have even lower capacity) to the more sophisticated investors (who now
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have even higher capacity). This reallocation of holdings leads to higher capital

income inequality without any general equilibrium effects.

Symmetric Capacity Growth Our third and most important set of analytic re-

sults shows that in the presence of initial heterogeneity, technological progress in

the form of symmetric growth in information capacity leads to a disproportionate in-

crease in ownership of risky assets by sophisticated investors, and to a growing capital

income polarization.

Proposition 4 (Symmetric Growth). Let K1 > K2 and φk−1 ≤ φ < φk, such

that the first k > 1 assets are actively traded in equilibrium. Consider an increase

in φ generated by a symmetric growth in capacities to K ′1 = (1 + γ)K1 and K ′2 =

(1 + γ)K2, γ ∈ (0, 1). Let k′ ≥ k denote the new equilibrium number of actively

traded assets. Then, for i ∈ {1, ..., k′},

(i) Average asset prices increase and average excess returns decrease.

(ii) Average ownership share of sophisticated investors E [q1i] /x increases and average

ownership share of unsophisticated investors E [q2i] /x decreases.

(iii) Average capital income gets more polarized, as E [π1i] /E [π2i] increases.

First, higher capacity for processing information means that investors receive more

accurate signals about the realized payoffs. Hence, their demand for assets co-moves

more closely with the realized state, which implies that prices contain a larger amount

of information about the fundamental shocks. As a result, the equilibrium implies

lower average returns, larger and more volatile positions, and higher market turnover.

Second, a symmetric growth in capacity that benefits both sophisticated and un-

sophisticated investors has two effects on portfolio holdings and capital income in-

equality: a partial equilibrium effect and a general equilibrium effect. Absent any

equilibrium price adjustment, the average holdings of risky assets and the comove-

ment between holdings and the realized state increase for both investor types. How-

ever, because growth in capacity benefits investors who already have relatively high
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capacity, the benefits accrue more for sophisticated investors. Further, in contrast

to the case of increased dispersion, a symmetric change in information capacity af-

fects equilibrium prices. As sophisticated investors increase their demand for risky

assets, this drives up average prices, reducing the expected profits of unsophisticated

investors, who in turn reduce their average holdings of risky securities.

Trading Volume The differential adjustment to shocks of the two investor types

also implies differences in trading intensity, which provides an additional set of

testable implications. We divide the investors into 3 groups: (i) sophisticated in-

vestors who learn about asset i, with per capita average volume V
SL

i ; (ii) unsophis-

ticated investors who learn about asset i, with per capita average volume V
UL

i ; and

(iii) investors who do not learn about asset i, with per capita average volume V
NL

i .

For assets that are not learned about volume is denoted by V
ZL

i . Hence, the total

volume generated by the optimizing investors at the asset level is21

Vi =

λmiV
SL

i + (1− λ)miV
UL

i + (1−mi)V
NL

i if i is learned about

V
ZL

i if i is not learned about.

(19)

We derive an analytic expression for the average per capita volume across states

for each asset and investor group, given by

V
g

i =
1√
π

(
σgqi +

√(
σgqi
)2

+
(
σgµi
)2
)
, (20)

where σgqi is the cross-sectional standard deviation of holdings across investors in

group g and σgµi is the variability of that group’s mean holdings across states. Intu-

itively, trading volume is higher the more disagreement there is in the cross-section

of investors and the more the group responds to shocks over time.

21The average volume of the noise traders is exogenous, given by the standard deviation of the
noise shock. Among optimizing investors, we assume that investors do not change groups over time.
When we take the volume predictions to the data, we compute turnover, which is given by Ti ≡ Vi/x.
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In turn, the degree of cross-sectional disagreement depends on how much capacity

investors allocate to learning about that asset, with

(
σgqi
)2

=


e2Kg−1
ρ2σ2

i
if i is learned about & g = SL,UL

0 if i is learned about & g = NL

0 if i is not learned about.

while the degree to which investors adjust holdings over time depends on how much

learning is allocated to the asset, both by the particular investor group and by the

market overall:

(
σgµi
)2

=



(
e2Kg

1+φmi

)2

σ2
x +

(
e2Kg−1−φmi

1+φmi

)2
1

ρ2σ2
i

if i is learned about & g = SL,UL(
1

1+φmi

)2

σ2
x +

(
φmi

1+φmi

)2
1

ρ2σ2
i

if i is learned about & g = NL

σ2
x if i is not learned about.

These expressions enable us to derive a set of testable implications summarized below.

Proposition 5 (Volume). Let K1 > K2 and φk−1 ≤ φ < φk, such that the first

k > 1 assets are actively traded in equilibrium. Then for assets that are learned

about, i ∈ {1, ..., k}, average volume is increasing in investor sophistication and is

higher for investors who actively trade the asset: V
SL

i > V
UL

i > V
NL

i .

Hence, sophisticated investors generate more asset turnover, since having higher

capacity to process information enables them to take larger and more volatile posi-

tions, relative to unsophisticated investors. Moreover, assets that are actively traded,

in turn, have a higher volume compared with assets that are passively traded (based

only on prior beliefs).

Learning from Prices In our analysis so far, we have presented the information

acquisition problem in terms of a constraint on information obtained through private
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signals alone, abstracting from the possibility of learning from the price realizations.

In the Online Appendix, we provide a formal proof that this is in fact an optimal

strategy in a world in which learning from prices is an option. Intuitively, if the

information contained in prices is costly to process–just like information contained in

the private signals–then prices are an inferior source of information compared with

the private signals that are designed to provide information specifically about payoffs,

since prices are contaminated with information about the noise trader shocks, which

are not payoff-relevant per se.

Remark on Risk Aversion Heterogeneity Capital income inequality can be also

driven by differences in investors’ risk aversion, in the absence of any heterogeneity

in the capacity to process information about asset payoffs. In particular, if one group

of investors were less risk averse they would hold a greater share of risky assets,

and hence they would have higher expected capital income.22 Within our mean-

variance specification, a growing difference in risk aversion produces growing aggregate

ownership in risky assets of less risk averse investors, and a uniform, proportional

retrenchment from risky assets of more risk averse investors. However, it does not

generate (i) differences in portfolio weights within a class of risky assets, (ii) investor-

specific rates of return on equity, or (iii) differential growth in ownership by asset

volatility.23

4 Quantitative Results

In this section, we parameterize our model using stock-level micro data by asset

class and investor type, combined with household-level data from the SCF. The use

of stock-level data allows us to parameterize the details of the stochastic environment

22Such setting would also encompass situations in which investors are exposed to different levels
of volatility in areas outside capital markets, like labor income.

23In a CRRA model, portfolio weights would also be identical across risky assets; hence, even in
that specification, rates of return on equity would be equalized across investor types.
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that the investors face, including asset heterogeneity. Using the SCF allows us to pin

down differences in sophistication among the households and to map the model’s pre-

dictions about capital income inequality to household-level data. We show that the

parameterized model generates a path for capital income inequality that is quantita-

tively close to the data. The critical forces here are symmetric aggregate technological

progress combined with initial heterogeneity.

4.1 Parameterization

The objective of our parameterization is to provide quantitative evidence on cap-

ital income inequality among the U.S. households. This requires specifying two types

of households: sophisticated and unsophisticated. However, because these investors

live in the market economy we need to include the third type of investor, institutional

investor. Hence, our parameterization includes three types of investors: institutional

investors, sophisticated retail investors, and unsophisticated retail investors.

We use two data sets in our parameterization. The first data set is institutional

portfolio holdings database from Thomson Reuters, which contains a large sample

of portfolios of publicly traded equity24 held by institutional investors, and comes

from quarterly reports required by law and submitted by institutional investors to the

Securities and Exchange Commission.25 These data help us pin down the fundamental

shocks to asset payoffs and noise trader demand, as well as the ratio of capacity

of institutional to retail investors. The second data set is the Survey of Consumer

Finances, which allows us to map the two retail investor groups into household groups

in the SCF. We use the SCF to identify the ratio of capacities between the two retail

investor groups, and to compare the model’s predictions on capital income inequality

24In our parameterization, we use direct stock holdings and returns, which allows us to use micro-
level holdings data. However, we view our results as applying more broadly to other asset classes,
such as mutual funds. For a detailed discussion, see Section 4.3.

25We identify institutional investors as investment companies or independent advisors (types 3
and 4) in the Thomson data. These investors include wealthy individuals, mutual funds, and hedge
funds. Among all types, these groups are particularly active in their information production efforts.
Retail investors, in turn, are other investors who are not in the Thomson data.
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between the two household groups to the data on capital income inequality in the

SCF.

Measure of household sophistication An important element of our analysis is

the measurement of investor sophistication. Following the work of Arrow (1987), Cal-

vet et al. (2009a) and Vissing-Jorgensen (2004), we use initial wealth levels as proxies

for initial sophistication. We assume that wealthier individuals have access to better

information production or processing technologies, i.e. they have greater information

capacity. Specifically, for each survey year, we consider two groups of participating

households: those who are in the top decile of total wealth (sophisticated retail in-

vestors) and those who are in the bottom 50% of total wealth (unsophisticated retail

investors). We use the ratio of financial wealth levels in the SCF in 1989 as a tar-

get for the ratio of information capacities between sophisticated and unsophisticated

retail investors (K2/K3).

Empirical Targets The complete list of parameter values and targets is presented

in Table 1. For parsimony, we restrict some parameters and normalize the natural

candidates. We normalize the mean payoff to z̄i = 10 and asset supply to x̄i = 5

for all assets. We restrict the volatilities of the noise shocks, σxi = σx for all assets,

and set the number of assets n = 10. The remaining parameters are the information

capacities of the three investor types (K1, K2, and K3), the fraction of institutional

investors in the population (λ), the fraction of sophisticated investors among the

retail investors (δ), the risk-free interest rate (r), the risk aversion parameter (ρ), the

volatility of the noise shock (σx), and the volatilities of the payoffs, {σi}ni=1, for which

we normalize the lowest volatility, σn = 1, and assume that volatility changes linearly

across assets.26

Motivated by our earlier discussion on the link between total wealth and sophis-

26Specifically, we set σi = σn+α(n−i)/n, which implies the volatility distribution is parameterized
fully by a single parameter α.

28



Table 1: Parameter Values

Parameter Symbol Value Target (1989-2000 averages)

Mean payoff, supply z̄i, x̄i 10, 5 for all i Normalization

Number of assets n 10 Normalization

Risk-free rate r 2.5% 3-month T-bill − inflation = 2.5%

Risk aversion ρ 1.106 Market return = 11.9%

Vol. of noise shocks σxi 0.41 for all i Average turnover = 9.7%

Vol. of asset payoffs σi ∈ [1, 1.4776] p90/p50 of idio return vol = 3.54

Information capacities K1, K2 0.4573, 0.4024, Sophisticated share = 23%

and investor masses K3, λ 0.0106, 0.205, Share actively traded = 50%

δ 0.16 Institutional return = 13.4%

tication, we set the ratio of capacities of sophisticated versus unsophisticated retail

investors to the ratio of the financial wealth of the top 10% versus the bottom 50% of

the total wealth distribution in the SCF in 1989, equal to 38. We also pick δ = 0.16,

reflecting the 10/50 weights of households we look at in the SCF. The rest of the

parameter values is chosen to jointly match key moments from stock-level micro data

and aggregate investor-type equity shares for the first half of our sample, 1989-2000.

We set the following targets: (i) the equity ownership share of sophisticated investors

of 23%; (ii) the average return on 3-month Treasury bills minus the inflation rate,

equal to 2.5%; (iii) the average annualized stock market return in excess of the risk-

free rate, equal to 11.9%; (iv) the average annualized stock market excess return of

the institutional investors of 13.4%; (v) the average monthly equity turnover (defined

as the total monthly volume divided by the number of shares outstanding), equal to

9.7%; (vi) the ratio of the 90th percentile to the median of the cross-sectional idiosyn-

cratic volatility of stock returns, equal to 3.54; and (vii) the fraction of assets that

investors learn about, which, in the absence of empirical guidance, we arbitrarily set

to 50%.

As shown in Table 2, the model implies a 2.24 percentage point advantage in the

average returns of the institutional portfolio (who earn an average return of 13.4%)
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relative to the retail plus noise traders portfolio (who earn an average return of

11.16%) and a 1.7 point advantage relative to only the retail portfolio which does

not include noise traders27. This difference is comparable to the 3 point difference

in the data for the 1989-2000 period (with average portfolio returns of 13.4% versus

10.4%). Thus, the model can generate a significant fraction of the empirical difference

in returns (ranging from 57% to 75% of the data), while matching other aggregate

targets.

Table 2: Average Portfolio Returns: Data and Model

1989-2000

Portfolio Return Data Model

Market Return 11.9% 11.6%

Institutional investors 13.4% 13.4%

Retail investors Only 10.4% 11.7 %

Retail investors + noise traders 11.16%

Return Decomposition As our analytical results suggest, higher sophistication

implies better portfolio performance. Specifically, institutional portfolios outperform

retail portfolios for two reasons (summarized in Propositions 1 and 2): (i) they are

more exposed to risk because they hold a larger share of risky assets (compensation

for risk); and (ii) they have informational advantage (compensation for skill). In

order to shed light on the relative importance of these two effects, we decompose

the returns of each investor type by computing the unconditional expectation of the

return on the portfolio held by investor type j ∈ {I, R}:

Rj = E
∑
i

ωjit(rit − r) =
∑
i

Cov(ωjit, rit) +
∑
i

EωjitE[rit − r], (21)

27In addition to the optimizing sophisticated and unsophisticated households, the model features
a third type of agent: noise traders, who trade for reasons unrelated to asset payoffs and prices.
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where rit = zit/pit is the time t return on asset i and ωjit is the portfolio weight of asset

i for investor j at time t as ωjit = qjitpit/
∑

l qjltplt. The first term of the decomposition

captures the covariance conditional on investor j information set, i.e. the investor’s

reaction to information flow via portfolio weight adjustment (skill effect); the second

term captures the average effect, unrelated to active trading.

Quantitatively, the skill effect accounts for the majority of the return differential

in the model. To show that, we compute the counterfactual return of institutional

investors if their skill matched that of retail investors, but their average holdings

stayed the same

R̂I =
∑
i

Cov(ωRit, rit) +
∑
i

EωIitE[rit − r]. (22)

Such a portfolio would generate an annualized return of 12%, which implies that the

compensation for skill accounts for 87% of the 1.7% return differential between the

institutional and retail portfolios.

Remark on Delegated Investment The above findings may suggest that house-

holds with little information could improve their returns by delegating their portfolios

to better-informed actively managed institutions. This process, however, would not

come as free because identifying a skilled manager ex ante requires allocating infor-

mation capacity. For example, extant literature in finance (e.g., Kacperczyk et al.

(2005) , Pástor et al. (2015)) finds that while the average abnormal gross returns

of mutual funds are positive, the distribution of returns is highly dispersed and the

returns are not predictable.28 Further, even if one could successfully identify such

superior investments, delegation is costly which lowers the benefit of switching. Fi-

nally, while it is true that the extent of delegated portfolio management has been

on the rise for most of our sample period, we show novel results indicating that the

28Empirically, we observe a strong persistence of negative returns and much weaker persistence
of positive returns.
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last two decades have witnessed a strong asymmetry in investment flows coming from

institutional (who enter) vs. retail investors (who leave), especially in the riskiest

equity mutual funds. These patterns are consistent with our theoretical predictions

and we discuss them in more detail in Section 4.3.29

4.2 Dynamics of Capital Income Inequality

We assess our model’s quantitative predictions for the evolution of capital income

inequality in response to aggregate growth in information technology. Specifically, we

simulate the model for 24 years, reflecting the number of years in the SCF, setting the

aggregate capacity level in each year to match the observed institutional ownership

rate in the stock market data. Hence, the ownership rates are matched both in the

model and in the data.30

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

1989	 1992	 1995	 1998	 2001	 2004	 2007	 2010	 2013	

Model	

Data	

Figure 6: Cumulative Growth in Capital Income Dispersion

The results of this exercise are presented in Figure 6. The model comes very close

29Another alternative for unsophisticated investors would be to participate in the passive market
portfolio instead. Although such investment would by design not benefit from information advantage
it could benefit from equity risk premium. However, from utility perspective such a portfolio would
not be desirable when compared to the information-sensitive investment in low-risk assets, especially
taking into consideration positive general equilibrium implications of participation on asset prices.

30In the first three years of this exercise, we match the ownership only approximately, as the
model implies a lower bound on institutional ownership of 20.5%, higher than the data counterpart
for these years (by 2 to 5 percentage points).
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to matching the overall growth in inequality in the data, with a 121% growth in the

model vs. 111% growth in the data.

The Importance of Heterogeneity Figure 7 presents results from an alternative

specification of the model with only one risky asset. The difference between this

specification, labeled One Asset, and the benchmark model quantifies the role of

asset heterogeneity in driving capital income inequality. 31 The one-asset economy

generates growth in capital income inequality that is only 17% of the growth generated

by the benchmark model. Hence, asset heterogeneity plays a crucial role in driving

capital income inequality in the model. It generates higher payoffs from learning

and larger effects on the retrenchment of unsophisticated investors from risky asset

markets.

Remark on Constant Relative Risk Aversion Utility In the Online Appendix,

we analyze the model with CRRA utility. Since a closed-form solution to the full

model is not feasible, we focus on a local approximation of the utility function. We

show that the model solution under no capacity differences predicts the same portfo-

lio shares for risky assets, independent of wealth. Intuitively, if agents have common

information, then wealth differences affect the composition of their allocation between

the risk-free asset and the risky portfolio, but not the composition of the risky port-

folio, which is determined optimally by the (common) belief structure. As a result,

differences in capacity are a necessary component of the model to generate any risky

31In terms of the parameterization, the model with one asset takes away three targets from
the benchmark model: heterogeneity in asset volatility, fraction of actively traded assets and the
return of institutional portfolios. We keep the value of risk aversion coefficient the same as in
the benchmark model and pick the volatility of the single asset payoff equal to the median payoff
volatility of the benchmark model. That leaves four remaining parameters: the fraction λ, overall
capacity φ, volatility of the noise trader demand σx, and the ratio of capacity of institutional versus
sophisticated retail investors. We choose these to match: the average market return (11.9%), average
asset turnover (9.7%), institutional ownership (23%) and the initial average stock ownership of 15.7%
taken from the benchmark model (to make the parameterizations comparable). In simulating the
model, we choose aggregate capacity period by period to match institutional ownership, just like in
the benchmark model.

33



1.0	

1.2	

1.4	

1.6	

1.8	

2.0	

2.2	

2.4	

1989	 1992	 1995	 1998	 2001	 2004	 2007	 2010	 2013	

One	Asset	

Benchmark	Model	

Figure 7: Cumulative Growth in Capital Income Dispersion: The Role of Asset and
Capacity Growth Heterogeneity.

return differences across agents.

Remark on Endogenous Capacity Choice In the benchmark model, we assume

an exogenous relation between initial capacity and an investor’s wealth. In the On-

line Appendix, we show how such relation could arise endogenously. Intuitively, if

investors endogenously choose different portfolio sizes, then their net benefit of in-

vesting in information will increase with portfolio size. We apply this idea in a model

in which investors have identical CRRA preferences and make endogenous capacity

choice decisions. In the context of the information choice model, CRRA utility spec-

ification is not tractable; hence, we map a common relative risk aversion together

with wealth differences locally into different absolute risk aversion coefficients. In a

numerical example, we show how initial wealth differences observed in the 1989 SCF

map into endogenous capacity differences, for different values of the cost of capacity

and different relative risk aversion coefficients. We show that for a wide range of the

risk aversion specifications and for capacity cost away from zero, the implied differ-

ences in capacity are equal or actually larger than the ones specified in the benchmark

model. Hence, we view our parameterization as cautious in that it implies modest

34



initial differences.

4.3 Testing the Mechanism

In this section, we generate a set of dynamic predictions of the model and com-

pare them to the corresponding data moments to provide support for our mechanism.

These are robust predictions of our mechanism proven analytically in Section 3. Be-

low, we show a good quantitative fit of these predictions vis a vis the data.

To test our mechanism, we explore the consequences of a symmetric change in

capacities of both investor types, targeting the change in the equity ownership share

of institutional investors. In the data, this share grew from an average of 23% in the

1989-2000 period to 46% during 2001-2012. We find that the progress in information

capacity required to achieve this target amounts to an annual growth of 13% (for 11

years, from the middle of the first sub period to the middle of the second sub period).

Hence, in the presence of initial capacity dispersion, subsequent symmetric capacity

growth is sufficient to generate a disproportionate growth in sophisticated ownership

and retrenchment of unsophisticated investors from risky assets.

Market Averages In the model, symmetric growth in information capacities im-

plies large changes in average market returns, cross-sectional return differentials, and

turnover. Table 3 reports the model predictions and their empirical counterparts.

Table 3: Market Averages: Data and Model

2001-2012

Statistic Data Model

Market Returns 2.4% 1.8%
Institutional portfolio 2.9% 1.83%
Retail portfolio 1.6% 1.77%
Unsophisticated + Noise traders portfolio 1.74%

Average Equity Turnover 16.0% 14.4%
Sophisticated Ownership Share (target) 46.0% 46.0%
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Both the model and the data exhibit a decrease in market return and in the

return differential between sophisticated and unsophisticated portfolios. The lower

market return is a result of an increase in the quantity of information, as prices track

payoffs more closely than in the initial sample period, implying lower excess returns.

The model also predicts a sharp increase in average asset turnover, in magnitudes

consistent with the data. As with the market return, this result is a direct implication

of our mechanism and is not driven by changes in fundamental asset volatilities, which

remain unchanged. Intuitively, higher turnover is driven by more informed trading by

sophisticated investors, due to their holding a larger share of the market and receiving

more precise signals about asset payoffs (Proposition 5).

Expansion of Ownership In our dynamic exercise, we target the overall increase

in sophisticated ownership. The expansion occurs in a very specific way across assets,

both in the model and in the data. In the model, investors prefer to learn about

assets with high volatility, and they initially start learning about the most volatile

assets, which increases their holdings of those assets. Further increases in capacity

induce them to expand learning to lower-volatility assets, per Lemma 3. In partial

equilibrium, this process holds for both investor types. However, in general equilib-

rium, as institutional investors expand ownership, they take larger positions, which

shrinks excess returns. Retail and less sophisticated investors are more responsive to

lower excess returns, and retrench.

In Panel (a) of Figure 8, we present the time series of sophisticated ownership

across asset volatility classes, generated by the model in response to a sequence of

aggregate information capacity underlying the exercise in Section 4.2, which matches

institutional ownership year by year. The model predicts that sophisticated investors

exhibit the highest initial growth in ownership for the the highest-volatility assets,

followed by growth in ownership of the medium-volatility assets, and then growth of

the lowest-volatility assets. This prediction is robustly borne out in the data, per
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Figure 8: Cumulative Growth in Institutional Ownership.

Panel (b) of Figure 8. As we argue in the analytical section, this prediction as unique

to our information-based mechanism, hence providing an important model validation.

In conclusion, even though we parameterize the model to match the aggregate own-

ership levels of sophisticated investors in the pre- and post-2000 periods, the model

also explains quantitatively how ownership changes across asset volatility classes, in

terms of both the timing of growth levels and the absolute magnitudes of the changes.

Cross-sectional Turnover Our model implies cross-sectional variation in asset

turnover. Intuitively, if an asset is more attractive and investors want to trade it,

then more investors with precise signals about this asset’s returns would want to

act on such better information by taking larger and more volatile positions. Since

sophisticated investors receive more precise signals, and they have preference for high-

volatility assets, we should see a positive relationship between volatility and turnover.

Table 4 reports turnover in relation to return volatility in the model and the data.

The first two rows compare data and the model prediction for 1989-2000 sub-

sample. Both data and model show that turnover is increasing in volatility. The

results are quantitatively close to each other. In the next two rows, we compare

data for the 2001-2012 period to results generated from the dynamic exercise in the

model in which we increase overall capacity. The model implies an increase in average
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Table 4: Turnover by Asset Volatility

Volatility quintile 1 2 3 4 5 Mean

1989-2000
Data 5% 8.5% 10.5% 12.5% 11.5% 9.7%
Model 9.25% 9.25% 9.36% 9.8% 10.7% 9.7%

2001-2012
Data 11% 14.6% 17% 18.4% 19.3% 16%
Model 12.8% 14% 14.8% 15% 15.3% 14.4%

turnover and additionally matches the cross-sectional pattern of this increase. This

effect is purely driven by our information friction, since the fundamental volatilities

in this exercise remain constant over time.32

Retrenchment Across Other Asset Classes We provide auxiliary empirical

support in favor of the model’s ownership predictions by considering money flows into

mutual funds. Equity funds are more risky than non-equity funds; hence, unsophis-

ticated investors should be less likely to invest in the former, especially if aggregate

information capacity grows.

We use mutual fund data from Morningstar, which classifies different funds into

those serving investors whose investment is at least $100,000 (institutional funds)

and those serving investors with investment value less than $100,000 (retail funds).

For the purpose of testing our predictions, we define sophisticated investors as those

investing in institutional funds and unsophisticated investors as those investing in

retail funds. We then calculate cumulative aggregate dollar flows into equity and

non-equity funds, separately for each investor type. The data span years 1989-2012.

As shown in Figure 9, the cumulative flows from sophisticated investors into eq-

uity and non-equity funds increase steadily over the entire sample period. In contrast,

the flows from unsophisticated investors display a markedly different pattern. The

32Our model also implies a positive turnover-ownership relationship, which we confirm in the
data. This result is consistent with the empirical findings in Chordia et al. (2011).
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Figure 9: Cumulative Flows to Mutual Funds: Institutional vs. Retail.

flows into equity funds grow until 2000 but subsequently decrease at a significant rate

of more than 3 times by 2012. Moreover, this decrease coincides with a significant

increase in cumulative flows to non-equity funds. Notably, the increase in equity fund

flows by unsophisticated investors observed in the early sample period is consistent

with the steady decrease in holdings of individual equity documented earlier. To

the extent that direct equity holdings are more risky than diversified equity port-

folios, such as mutual funds, this implies that unsophisticated investors have been

systematically reallocating their wealth from riskier to safer asset classes.

Overall, the findings support our model’s predictions: Sophisticated households

have a large exposure to risky assets and subsequently add exposure to less risky

assets, while unsophisticated ones leave riskier assets and increasingly move into safer

assets as they face greater information disadvantage.

5 Concluding Remarks

What contributes to the growing income inequality across households? This ques-

tion has been of great economic and policy relevance for at least several decades

starting with the seminal work by Kuznets (1953). We approach this question from

the perspective of capital income that is known to be highly unequally distributed
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across individuals. We propose a theoretical information-based framework that links

capital income derived from financial markets to a level of investor sophistication. Our

model implies the presence of income inequality between sophisticated and unsophis-

ticated investors that is growing in the extent of total sophistication in the market,

and could be the result of aggregate technological progress. Additional predictions

on asset ownership, market returns, and turnover help us pin down the economic

mechanism and rule out alternative explanations. The quantitative predictions of the

model match qualitatively and quantitatively the observed data.

One could argue that the overall growth of investment resources and competition

across investors with different skill levels are generally considered as a positive aspect

of a well-functioning financial market. However, our work suggests that one should

assess any policy targeting overall information environment in financial markets as

potentially exerting an offsetting and negative effect on socially relevant issues, such

as distribution of income. Our work also sheds light on the overall benefits and

redistribution aspects of progress in financial markets in terms of creating new fi-

nancial instruments. Depending on where the new assets land on the volatility (or

more generally, opaqueness) spectrum, the benefits will accrue to the relatively less

(low-volatility assets) or more (high-volatility assets) sophisticated investors.

References

Alvaredo, Facundo, Anthony Atkinson, Thomas Piketty, and Emmanuel Saez, 2013,
The top 1 percent in international and historical perspective, Journal of Economic
Perspectives 27, 1–21.

Ameriks, John, and Steve Zeldes, 2001, How do household portfolios vary with age,
Working paper, Columbia University.

Arrow, Kenneth J, 1987, The demand for information and the distribution of income,
Probability in the Engineering and Informational Sciences 1, 3–13.

Atkinson, Anthony B, Thomas Piketty, and Emmanuel Saez, 2011, Top incomes over
a century or more, Journal of Economic Literature 49, 3–71.

40



Autor, David, H, Lawrence F Katz, and Melissa S Kearney, 2006, The polarization
of the US labor market, Working paper, National Bureau of Economic Research.

Barber, Brad M, Yi-Tsung Lee, Yu-Jane Liu, and Terrance Odean, 2009, Just how
much do individual investors lose by trading?, Review of Financial Studies 22,
609–632.

Barber, Brad M, and Terrance Odean, 2000, Trading is hazardous to your wealth: The
common stock investment performance of individual investors, Journal of Finance
55, 773–806.

Barber, Brad M, and Terrance Odean, 2001, Boys will be boys: Gender, overconfi-
dence, and common stock investment, Quarterly Journal of Economics 116, 261–
292.

Calvet, Laurent E, John Y Campbell, and Paolo Sodini, 2007, Down or out: assessing
the welfare costs of household investment mistakes, Journal of Political Economy
115, 707–747.

Calvet, Laurent E, John Y Campbell, and Paolo Sodini, 2009a, Fight or flight? Port-
folio rebalancing by individual investors, Quarterly Journal of Economics 124, 301–
348.

Calvet, Laurent E, John Y Campbell, and Paolo Sodini, 2009b, Measuring the finan-
cial sophistication of households, American Economic Review 99, 393–398.

Campbell, John Y, 2006, Household finance, Journal of Finance 61, 1553–1604.

Chien, YiLi, Harold Cole, and Hanno Lustig, 2011, A multiplier approach to under-
standing the macro implications of household finance, Review of Economic Studies
78 (1), 199–234.

Favilukis, Jack, 2013, Inequality, stock market participation, and the equity premium,
Journal of Financial Economics 107 (3), 740–759.

Gomes, Francisco, and Alexander Michaelides, 2005, Optimal life-cycle asset alloca-
tion: understanding the empirical evidence, Journal of Finance 60, 869–904.

Gompers, Paul A, and Andrew Metrick, 2001, Institutional investors and equity
prices, The Quarterly Journal of Economics 116, 229–259.

Grinblatt, Mark, Matti Keloharju, and Juhani Linnainmaa, 2012, IQ, trading behav-
ior, and performance, Journal of Financial Economics 104, 339–362.

Guiso, Luigi, and Paolo Sodini, 2012, Household finance: An emerging field, Working
paper, CEPR Discussion Papers.

41



Kacperczyk, Marcin, Stijn Van Nieuwerburgh, and Laura Veldkamp, 2015, A rational
theory of mutual funds’ attention allocation, Econometrica, forthcoming.

Kennickell, Arthur B, 2006, Currents and undercurrents: Changes in the distribution
of wealth, 1989-2004. FRB Survey of Consumer Finances Working Paper, Working
paper, Federal Reserve Board of Governors.

Kuznets, Simon, 1953, Shares of Upper Income Groups in Savings, in Shares of Upper
Income Groups in Income and Savings (NBER, New York ).

Mankiw, N Gregory, and Stephen P Zeldes, 1991, The consumption of stockholders
and nonstockholders, Journal of Financial Economics 29, 97–112.

Mondria, Jordi, 2010, Portfolio choice, attention allocation, and price comovement,
Journal of Economic Theory 145, 1837–1864.
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Appendix: Proofs

Model

Portfolio Choice. In the second stage, each investor chooses portfolio holdings qji to solve

max{qji}ni=1
Uj = Ej (Wj)− ρ

2Vj (Wj) s.t. Wj = r (W0j −
∑n

i=1 qjipi) +
∑n

i=1 qjizi,

where Ej and Vj denote the mean and variance conditional on investor j’s information set:

Ej (Wj) = Ej [rW0j +
∑n

i=1 qji (zi − rpi)] = rW0j +
∑n

i=1 qji [Ej (zi)− rpi] ,

Vj (Wj) = Vj [rW0j +
∑n

i=1 qji (zi − rpi)] =
∑n

i=1 q
2
jiVj (zi) .

Let µ̂ji ≡ Ej [zi] and σ̂2
ji ≡ Vj [zi]. The investor’s portfolio problem is to maximize

Uj = rW0j +
∑n

i=1 qji (µ̂ji − rpi)− ρ
2

∑n
i=1 q

2
jiσ̂

2
ji.

The first order conditions with respect to qji yield qji =
µ̂ji−rpi
ρσ̂2
ji

. Since W0j does not affect

the optimization, we normalize it to zero. The indirect utility function becomes

Uj = 1
2ρ

∑n
i=1

(µ̂ji−rpi)2

σ̂2
ji

.

Posterior Beliefs. The signal structure, zi = sji + δji, implies that

µ̂ji = z +
Cov(sji,zi)

σ2
sji

(sji − sji) = sji,

σ̂2
ji = σ2

i

(
1− Cov2(sji,zi)

σ2
sjiσ

2
i

)
= σ2

δji.
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Information Constraint. Let H (z) denote the entropy of z, and let H (z|sj) denote the
conditional entropy of z given the vector of signals sj . Then

I (z; sj) ≡ H (z)−H (z|sj)
(1)
=
∑n

i=1H (zi)−H (z|sj)
(2)
=
∑n

i=1H (zi)−
∑n

i=1H
(
zi|zi−1, sj

)
(1)
=
∑n

i=1H (zi)−
∑n

i=1H (zi|sj)
(3)
=
∑n

i=1H (zi)−
∑n

i=1H (zi|sji) =
∑n

i=1 I (zi; sji)

where (1) follows from the independence of the payoffs zi; (2) follows from the chain rule
for entropy, where zi−1 = {z1, ..., zi−1}; (3) follows from the independence of the signals sji.

For each asset i, the entropy of zi ∼ N
(
z, σ2

i

)
is H (zi) = 1

2 ln
(
2πeσ2

i

)
.

The signal structure, zi = sji + δji, implies that

I (zi; sji) = H (zi) +H (sji)−H (zi, sji) = 1
2 log

(
σ2
i σ

2
sji

|Σzisji |

)
= 1

2 log

(
σ2
i

σ2
δji

)
,

where
∣∣Σzisji

∣∣ = σ2
sjiσ

2
δji is the determinant of the variance-covariance matrix of zi and sji.

Hence I (zi; sji) = 0 if σ2
δji = σ2

i .

Across assets, I (z; sj) =
∑n

i=1 I (zi; sji) = 1
2

∑n
i=1 log

(
σ2
i

σ2
δji

)
= 1

2 log

(
n∏
i=1

σ2
i

σ2
δji

)
≤ Kj .

Information Objective. Expected utility is given by

E0j [Uj ] = 1
2ρE0j

[∑n
i=1

(µ̂ji−rpi)2

σ̂2
ji

]
= 1

2ρ

∑n
i=1

E0j[(µ̂ji−rpi)2]
σ̂2
ji

= 1
2ρ

∑n
i=1

(
R̂2
ji+V̂ji

σ̂2
ji

)
,

where R̂ji and V̂ji denote the ex-ante mean and variance of expected excess returns, µ̂ji−rpi.
Conjecture (and later verify) that prices are normally distributed, pi ∼ N

(
pi, σ

2
pi

)
.

R̂ji ≡ E0j (µ̂ji − rpi) = z − rpi,

V̂ji ≡ V0j (µ̂ji − rpi) = V ar (µ̂ji) + r2σ2
pi − 2rCov (µ̂ji, pi) .

The signal structure implies that V ar (µ̂ji) = σ2
sji.

Following Admati (1985), we conjecture (and later verify) that prices are pi = ai+biεi−ciνi,
for some coefficients ai, bi, ci ≥ 0. We compute Cov (µ̂ji, pi) exploiting the fact that posterior
beliefs and prices are conditionally independent given payoffs. We obtain

V̂ji = σ2
sji + r2σ2

pi − 2rbiσ
2
sji = (1− rbi)2 σ2

i + r2c2
iσ

2
x − (1− 2rbi) σ̂

2
ji.

Hence the distribution of expected excess returns is normal with mean and variance:
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R̂ji = z − rai and V̂ji = (1− rbi)2 σ2
i + r2c2

iσ
2
x − (1− 2rbi) σ̂

2
ji.

Expected utility becomes

E0j [Uj ] = 1
2ρ

∑n
i=1Gi

σ2
i

σ̂2
ji
− 1

2ρ

∑n
i=1 (1− 2rbi) ,

where Gi ≡ (1− rbi)2 +
r2c2i σ

2
x

σ2
i

+ (z−rai)2
σ2
i

, and where the second summation is independent

of the investor’s choices.

Proof of Lemma 1 (Information Choice). The linear objective function and the con-
vex constraint imply that each investor allocates all capacity to learning about a single asset.
For all other assets, the posterior variance is equal to the prior variance. Let lj index the as-

set about which investor j learns. The information constraint becomes
n∏
i=1

σ2
i

σ̂2
ji

=
σ2
lj

σ̂2
jlj

= e2Kj ,

and hence the variance of the investor’s beliefs is given by

σ̂2
ji =

{
e−2Kjσ2

i if i = lj ,

σ2
i if i 6= lj .

The investor’s problem becomes picking the asset lj to maximize
∑n

i=1Gi
σ2
i

σ̂2
ji

=(
e2Kj − 1

)
Glj +

∑n
i=1Gi. Since e2Kj > 1, the objective is maximized by allocating all

capacity to the asset with the largest utility gain: lj ∈ arg maxiGi. The distribution of
posterior beliefs follows.

Conditional Distribution of Signals. Conditional on the realized payoff, the signal is a
normally distributed random variable, with mean and variance given by

E (sji|zi) = sji +
Cov(sji,zi)

σ2
i

(zi − z) =

{
z +

(
1− e−2Kj

)
εi if i = lj

z if i 6= lj ,

V (sji|zi) = σ2
sji

(
1− Cov2(sji,zi)

σ2
sjiσ

2
i

)
=

{(
1− e−2Kj

)
e−2Kjσ2

i if i = lj

0 if i 6= lj .

Proof of Lemma 2 (Equilibrium Prices). The market clearing condition for each asset
in state (zi, xi) is∫
M1i

(
sji−rpi
e−2K1ρσ2

i

)
dj +

∫
M2i

(
sji−rpi
e−2K2ρσ2

i

)
dj + (1−m1i −m2i)

(
z−rpi
ρσ2
i

)
= xi,

where M1i denotes the set of measure m1i ∈ [0, λ] of sophisticated investors who choose to
learn about asset i, and M2i denotes the set of measure m2i ∈ [0, 1− λ], of unsophisticated
investors who choose to learn about asset i.

Using the conditional distribution of the signals,
∫
M1i

sjidj = m1i

[
z +

(
1− e−2K1

)
εi
]

for
the type-1 investors, and analogously for the type-2 investors. Then, the market clearing
condition can be written as α1z + α2εi − xi = α1rpi, where
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α1 ≡
1+m1i(e2K1−1)+m2i(e2K2−1)

ρσ2
i

and α2 ≡
m1i(e2K1−1)+m2i(e2K2−1)

ρσ2
i

.

We obtain identification of the coefficients in pi = ai + biεi − ciνi as

ai = 1
r

[
z − x

α1

]
, bi = α2

rα1
, and ci = 1

rα1
.

Let Φi ≡ m1i

(
e2K1 − 1

)
+m2i

(
e2K2 − 1

)
be a measure of the information capacity allocated

to learning about asset i in equilibrium. Further substitution yields

ai = 1
r

(
z − ρσ2

i x
1+Φi

)
, bi = 1

r

(
Φi

1+Φi

)
, ci = 1

r

(
ρσ2
i

1+Φi

)
.

Proof of Lemma 3 (Equilibrium Learning). Substituting ai, bi, and ci in Gi ≡
(1− rbi)2 +

r2c2i σ
2
x

σ2
i

+ (z−rai)2
σ2
i

and defining ξi ≡ σ2
i

(
σ2
x + x2

)
gives Gi = 1+ρ2ξi

(1+Φi)
2 .

By Lemma 1, each investor learns about a single asset among the assets with the highest
gain. WLOG, assets are ordered such that σi > σi+1, for all i ∈ {1, ..., n− 1}. First suppose
that all investors learn about the same asset. Since Gi is increasing in σi, this asset is asset

1. All investors learn about asset 1 as long as φ ≤ φ1 ≡
√

1+ρ2ξ1
1+ρ2ξ2

− 1. At this threshold,

some investors switch and learn about the second asset.

For φ > φ1, equilibrium gains must be equated among all assets with positive learning
mass. Otherwise, investors have an incentive to switch to learning about the asset with the
higher gain. Moreover, the gains of all assets with zero learning mass must be strictly lower.
Otherwise, an investor would once again have the incentive to deviate and learn about one
of these assets.

To derive expressions for the mass of investors learning about each asset, we assume that the
participation of sophisticated and unsophisticated investors in learning about a particular
asset is proportional to their mass in the population: m1i = λmi and m2i = (1− λ)mi,
where mi is the total mass of investors learning about asset i. The necessary and sufficient
conditions for determining {mi}ni=1 are

∑k
i=1mi = 1; 1+φmi

1+φm1
= ci1, for any i ∈ {2, ..., k} ,

where ci1 ≡
√

1+ρ2ξi
1+ρ2ξ1

≤ 1, with equality iff i = 1; and mi = 0 for any i ∈ {k + 1, ..., n}.
Recursively, mi = ci1m1 − 1

φ (1− ci1) , ∀i ∈ {2, ..., k}. Using
∑k

i=1mi = 1, and defining

Ck ≡
∑k

i=1 ci1, we obtain the solution for m1 given by m1 = 1
Ck

+ 1
φ

(
k
Ck
− 1
)

. Using this

expression, we obtain the solution for all mi, i ∈ {1, ..., k}, mi = ci1
Ck

+ 1
φ

(
kci1
Ck
− 1
)

.

Proof of Lemma 4 (Learning Dynamics). (i) First, consider a local increase in φ to
some φ′ ≤ φk, such that no new assets are learned about in equilibrium (k and Ck are
unchanged). For i ∈ {1, ..., k},

dmi
dφ = − 1

φ2

(
kci1
Ck
− 1
)

, where ci1 ≡
√

1+ρ2ξi
1+ρ2ξ1

≤ 1 and Ck ≡
∑k

i=1 ci1.
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Hence mi is strictly decreasing in φ if ci1 >
Ck
k (namely, if the asset is above average in

terms of relative volatility), and mi is increasing in φ otherwise. Since ci1 is decreasing in
i, the condition cı̄1 = Ck/k defines the cutoff asset ı̄. Moreover, note that for i ∈ {1, ..., ı̄},
the absolute value of dmi

dφ is decreasing in i, such that the masses of the more volatile assets
fall by more than those of the less volatile assets. Likewise, for i ∈ {ı̄+ 1, ..., k}, the value of
dmi
dφ is increasing in i, such that the masses of the less volatile assets increase by more than

those of the more volatile assets. This results in a flattening of the distribution of investors
across assets.

Next, suppose that k < n, and consider an increase in φ to some φ′ > φk, such that k′ > k
assets are learned about (with k′ ≤ n). Let the new equilibrium masses be denoted by m′i
for i ∈ {1, ..., k′}. Hence, Σk

i=1m
′
i < 1. Using the recursive expression for mi in terms of

m1, for i ∈ {2, ..., k}

mi −m′i = ci1 (m1 −m′1)− (1− ci1)
(

1
φ −

1
φ′

)
.

Suppose that m1 ≤ m′1. Then Σk
i=1mi−Σk

i=1m
′
i = 1−Σk

i=1m
′
i < 0, which is a contradiction.

Hence m1 > m′1. Moreover, since ci1 is decreasing in i, the condition mı̄ = m′ı̄ defines the
threshold value for ci1 that defines the cutoff asset ı̄.

(ii) First, consider a local increase in φ to some φ′ < φk, such that no new assets are learned
about (k and Ck are unchanged). For i ∈ {1, ..., k},

d(φmi)
dφ = ci1

Ck
> 0.

Next, suppose that k < n, and consider an increase in φ to some φ′ > φk, such that k′ > k
assets are learned about in equilibrium (with k′ ≤ n). First, for the new assets that are
actively traded, i ∈ {k + 1, ..., k′}, m′i > mi = 0, hence, φ′m′i > φmi. Second, consider an
asset i ∈ {1, ..., k} and an asset h ∈ {k + 1, ..., k′}. Let the new equilibrium gains be denoted
by G′i and G′h. Then Gi > Gh, which implies that 1+φmi < cih, and G′i = G′h, which implies
that 1 + φ′m′i = (1 + φ′m′h) cih > (1 + φ′m′h) (1 + φmi)⇔ φ′m′i > φmi + φ′m′h (1 + φmi) >
φmi.

(iii) Let K1 = K and K2 = δK, for some δ ∈ (0, 1), and consider a symmetric increase in
Kj to (1 + γ)Kj such that the first k′ ≥ k assets are learned about.

Let ı̄ denote the cutoff asset determined in part (i). For i ∈ {ı̄, ..., k′}, both mi

(
e2K1 − 1

)
and mi

(
e2K2 − 1

)
increase, since m′i ≥ mi, but mi

(
e2K1 − 1

)
grows by more since ex is

convex.

For i ∈ {1, ...., ı̄− 1}, mi is decreasing in φ.
Let miφ ≡ dmi

dφ . The derivatives of interest are

D1 ≡ d[mi(e
2K1−1)]
dK1

= miφ

(
e2K − 1

) dφ
dK + 2e2Kmi

D2 ≡ d[mi(e
2K2−1)]
dK2

= miφ

(
e2Kδ − 1

) dφ
dK + 2δe2Kδmi
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where dφ
dK = 2λe2K + 2δ (1− λ) e2Kδ > 0.

Factoring out 2e2K yields

D1 = 2e2K
{
mi +miφ

(
e2K − 1

) [
λ+ (1− λ) δe2K(δ−1)

]}
= 2e2K

{
mi +miφ

[
λ
(
e2K − 1

)
+ (1− λ) δ

(
e2Kδ − e2K(δ−1)

)]}
(1)
> 2e2K

{
mi +miφ

[
λ
(
e2K − 1

)
+ (1− λ)

(
e2Kδ − 1

)]}
= 2e2K {mi +miφφ} = 2e2K

[
d(φmi)
dφ

] (2)
> 0,

where (2) follows from part (ii) above and (1) follows from the evaluation of the function

F (δ) = e2Kδ− 1− δ
(
e2Kδ − e2K(δ−1)

)
for which F (0) = F (1) = 0, F ′ (δ) = 0 has a unique

solution, F ′ (δ) > 0 and F ′ (δ) < 0, which imply that F (δ) > 0.

Next, note that λD1 + (1− λ)D2 =
[
d(φmi)
dφ

]
dφ
dK = 2

[
d(φmi)
dφ

] [
λe2K + δ (1− λ) e2Kδ

]
. We

have just shown that D1 > 2e2K
[
d(φmi)
dφ

]
, so for the equality to hold it must be the case

that D2 < 2δe2Kδ
[
d(φmi)
dφ

]
. Hence D1 > 0 and D1 > D2. It remains to be determined if

D2 > 0 as well.

D2 = 2e2Kδ
{
δmi +miφ

(
1− e−2Kδ

) [
λe2K + δ (1− λ) e2Kδ

]}
= 2e2Kδ

{
δmi +miφ

[
λe2K + δ (1− λ) e2Kδ − λe2K−2Kδ − δ (1− λ)

]}
= 2e2Kδ

{
δmi +miφ

[
λ
(
e2K − 1

)
− λ

(
e2K−2Kδ − 1

)
+ δ (1− λ)

(
e2Kδ − 1

)]}
> 2e2Kδ

{
δmi +miφ

[
λ
(
e2K − 1

)
+ δ (1− λ)

(
e2Kδ − 1

)]}
> 2e2Kδ

{
δmi +miφ

[
λ
(
e2K − 1

)
+ (1− λ)

(
e2Kδ − 1

)]}
= 2e2Kδ {δmi +miφφ} = 2e2Kδ

[
d(φmi)
dφ

]
− (1− δ)mi.

Hence, if δ is not too small (i.e. capacity dispersion is not too large), then D2 > 0 for
i ∈ {1, ..., ı̄− 1} as well.

Hence, for assets i ∈ {1, ..., ı̄− 1}, for which the mass of investors falls in response to
the capacity growth, mi

(
e2K1 − 1

)
grows and mi

(
e2K2 − 1

)
grows by less, or even falls, if

capacity dispersion is large enough.

Analytic Results

Proof of Proposition 1. Results follow from equations (14-16).

Proof of Proposition 2. (i) Follows from the definition of capital income per capita and
equation (15). (ii) Since for all i ∈ {1, ..., k}, the gains Gi are equated in equilibrium, then
E [π1i − π2i] is increasing in mi, which in turn is increasing in σ2

i .

Proof of Proposition 3. (i) The increase in dispersion keeps φ unchanged. Therefore,
using equation (11), the masses mi are unchanged. With both φ and mi unchanged, prices
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are unchanged. (ii) The result follows from equation (15): masses and prices do not change,
and dispersion,

(
e2K1 − e2K2

)
increases. (iii) Relative capital income is

π1i

π2i
=

(zi − rpi) (zi − rpi) +
(
e2K1 − 1

)
mi (zi − rpi)2

(zi − rpi) (zi − rpi) + (e2K2 − 1)mi (zi − rpi)2 > 1.

Since prices are unchanged, (zi − rpi) (zi − rpi) and mi (zi − rpi)2 are unchanged. Since
K ′1 > K1 and K ′2 < K2, the second term in π1i increases and the second term in π2i

decreases.

Proof of Proposition 4. (i) Using equilibrium prices, pi = 1
r

(
z − ρσ2

i x
1+φmi

)
. Per Lemma 4,

φmi is increasing in φ. Hence, for i ∈ {1, ..., k}, pi is increasing in φ. The result for
equilibrium expected excess returns E [zi − rpi] follows.

(ii) Since λE [q1i] + (1− λ)E [q2i] = x̄, it is sufficient to show that for i ∈ {1, ..., k′}, E [q1i]
increases in response to symmetric capacity growth. Let K ≡ K1, and K2 = δK, with
δ ∈ (0, 1). Since

E [q1i] =
1+mi(e2K−1)

(1+φmi)
x̄, then dE[q1i]

dK = x̄
(1+φmi)

2

[
d[mi(e2K−1)]

dK (1 + φmi)− d(φmi)
dφ

dφ
dKmi

(
e2K − 1

)]
.

Hence sign
(
dE[q1i]
dK

)
= sign

(
d[mi(e2K−1)]

dK − d(φmi)
dφ

dφ
dK

mi(e2K−1)
1+φmi

)
.

In the proof of Lemma 4, we show that
d[mi(e2K−1)]

dK > 2e2K d(φmi)
dφ > 0. Hence,

sign
(
dE[q1i]
dK

)
= sign

(
2e2K − dφ

dK

mi(e2K−1)
1+φmi

)

= sign

(
2e2K − 2mi[λe2K+(1−λ)δe2Kδ](e2K−1)

1+mi[λ(e2K−1)+(1−λ)(e2Kδ−1)]

)

= sign

(
e2K −

(
e2K − 1

) mi[λe2K+(1−λ)δe2Kδ]
1+mi[λe2K+(1−λ)e2Kδ]−mi

)
(1)
= sign

(
e2K −

(
e2K − 1

) [ mi[λe2K+(1−λ)e2Kδ]
1+mi[λe2K+(1−λ)e2Kδ]−mi

])
(2)
= sign

(
e2K −

(
e2K − 1

))
> 0

where (1) follows from δ ∈ (0, 1), and (2) follows from the fact that the term in square
brackets is less than 1.

(iii) Let the per capita capital income be decomposed into a component Ci that is common
across investor groups, and a component that is group-specific:
π1i = ci + 1

ρσ2
i
mi

(
e2K − 1

)
(zi − rpi)2, where ci ≡ 1

ρσ2
i

(z − rpi) (zi − rpi), with expected

value Ci. Then E [π1i] = Ci + 1
ρσ2
i
mi

(
e2K − 1

)
E
[
(zi − rpi)2

]
= Ci + 1

ρmi

(
e2K − 1

)
Gi,

where Gi is the gain from learning about asset i, equated across all i ∈ {1, ..., k}.

49



We then obtain that E[π1i]
E[π2i]

=
Ci+

1
ρ
mi(e2K−1)Gi

Ci+
1
ρ
mi(e2Kδ−1)Gi

.

In response to an increase in K, Ci and Gi decrease, but they affect both sophisticated and
unsophisticated profits in the same way. From Lemma 4, mi

(
e2K − 1

)
increases by more

than mi

(
e2Kδ − 1

)
in response to a change in K. Hence overall, E[π1i]

E[π2i]
increases.

Derivation of volume per capita. We define the volume of trade in asset i between two

periods, across all optimizing investors j in group g as V g
i ≡

∫ ∣∣∣q′ji − qji∣∣∣ dj. Integrating over

all possible realizations of q′ji and qji, we obtain average volume across many periods, V
g
i .

We assume that investors do not change groups over time. To ease notation, most of the
derivation omits group and asset superscripts.

Volume between two periods for a generic group First, we calculate the ex-
pected volume of trade for each asset by agents in each group from period t to t + 1. Let
f and F denote the pdf and cdf of current holdings, with mean µq and standard deviation
σq. Let f ′ and F ′ denote the pdf and cdf of future holdings, with mean µ′q and standard
deviation σ′q.

STEP 1. Consider a particular investor with holdings q in the current period. The investor’s
expected volume of trade between the current and the next period is

v (q) ≡
∫ +∞
−∞ |q

′ − q| f ′ (q′) dq′ = 2qF (q)− q − 2F ′ (q)Ef ′ [q
′|q′ < q] + µ′q.

Using the formula for the expected value of a normal truncated from above,

v (q) = 2qF (q)− q − 2µ′qF
′ (q) + 2σ′2q f

′ (q) + µ′q.

STEP 2. Integrating over the (normal) distribution of holdings q in the group,

V g =
∫ +∞
−∞ v (q) f (q) dq = 2

∫ +∞
−∞ qF (q) f (q) dq − µq − 2µ′q

∫ +∞
−∞ F ′ (q) f (q) dq +

2σ′2q
∫ +∞
−∞ f ′ (q) f (q) dq + µ′q.

Using the formulas
∫ +∞
−∞ exp

{
−ax2 + bx+ c

}
dx =

√
π
a exp

{
b2

4a + c
}
,

∫ +∞
−∞ Φ (a+ bx)φ (x) dx = Φ

(
a√

1+b2

)
and

∫ +∞
−∞ xΦ (bx)φ (x) dx = b√

2π(1+b2)
,

we compute J1 ≡
∫ +∞
−∞ qF (q) f (q) dq =

µq
2 +

σq
2
√
π
,

J2 ≡
∫ +∞
−∞ F ′ (q) f (q) dq = Φ

(
µq−µ′q√
σ2
q+σ′2q

)
,
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J3 ≡
∫ +∞
−∞ f ′ (q) f (q) dq = 1√

2π(σ2
q+σ′2q )

exp

{
− (µq−µ′q)

2

2(σ2
q+σ′2q )

}
.

Hence V g =
σq√
π
− 2µ′qΦ

(
µq−µ′q√
σ2
q+σ′2q

)
+

2σ′2q√
2π(σ2

q+σ′2q )
exp

{
− (µq−µ′q)

2

2(σ2
q+σ′2q )

}
+µ′q, where the means

and standard deviations are group and asset specific.

Since the shocks are i.i.d., holdings have the same cross-sectional variance in all periods,
σ′q = σq, though they will have different means, depending on shock realizations. Hence

V g =
σq√
π

[
1 + exp

{
−(µq−µ′q)

2

4σ2
q

}]
+ µ′q

[
1− 2Φ

(
µq−µ′q√

2σ2
q

)]
.

Average volume across many periods for a generic group We assume no
change in the environment, including no change in capacities and hence learning. Let the
distribution of mean holdings µq be denoted by g, with mean and variance µµ and σ2

µ. Since
the shocks are normal i.i.d., this distribution is stationary and also normal. The average
volume across all possible realizations of µq and µ′q is

V
g

=
∫ +∞
−∞ vg (µq) g (µq) dµq, with vg (µq) =

∫ +∞
−∞ V g

(
µq, µ

′
q

)
g
(
µ′q
)
dµ′q.

STEP 3. Using the expression for V g,

vg (µq) =
σq√
π

+
σq√
π

∫ +∞
−∞ exp

{
−(µq−µ′q)

2

4σ2
q

}
g
(
µ′q
)
dµ′q + µµ − 2

∫ +∞
−∞ µ′qΦ

(
µq−µ′q√

2σ2
q

)
g
(
µ′q
)
dµ′q

Using the formulas for integrals of normal distributions, we compute

J1 ≡
∫ +∞
−∞ exp

{
−(µq−µ′q)

2

4σ2
q

}
g
(
µ′q
)
dµ′q =

√
2σ2
q

σ2
µ+2σ2

q
exp

{
− (µq−µµ)2

2(σ2
µ+2σ2

q)

}
,

J2 ≡
∫ +∞
−∞ µ′qΦ

(
µq−µ′q√

2σ2
q

)
g
(
µ′q
)
dµ′q = µµΦ

(
µq−µµ√
σ2
µ+2σ2

q

)
− σ2

µ√
σ2
µ+2σ2

q

φ

(
µq−µµ√
σ2
µ+2σ2

q

)
.

Then vg (µq) =
σq√
π

+
σq√
π
J1 + µµ − 2J2 becomes

σq√
π

+
σ2
q

√
2√

π(σ2
µ+2σ2

q)
exp

{
− (µq−µµ)2

2(σ2
µ+2σ2

q)

}
+ µµ − 2µµΦ

(
µq−µµ√
σ2
µ+2σ2

q

)
+

2σ2
µ√

σ2
µ+2σ2

q

φ

(
µq−µµ√
σ2
µ+2σ2

q

)
.

STEP 4. Finally, integrating vg (µq) over all possible realizations of µq, we obtain

V
g

=
σq√
π

+
σ2
q

√
2√

π(σ2
µ+2σ2

q)

∫ +∞
−∞ exp

{
− (µq−µµ)2

2(σ2
µ+2σ2

q)

}
g (µq) dµq + µµ

−2µµ
∫ +∞
−∞ Φ

(
µq−µµ√
σ2
µ+2σ2

q

)
g (µq) dµq +

2σ2
µ√

σ2
µ+2σ2

q

∫ +∞
−∞ φ

(
µq−µµ√
σ2
µ+2σ2

q

)
g (µq) dµq.
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We compute

J1 ≡
∫ +∞
−∞ exp

{
− (µq−µµ)2

2(σ2
µ+2σ2

q)

}
g (µq) dµq =

√
σ2
µ+2σ2

q

2(σ2
µ+σ2

q)
,

J2 ≡
∫ +∞
−∞ Φ

(
µq−µµ√
σ2
µ+2σ2

q

)
g (µq) dµq = 1

2 ,

J3 ≡
∫ +∞
−∞ φ

(
µq−µµ√
σ2
µ+2σ2

q

)
g (µq) dµq = J1√

2π
.

Then

V
g

=
σq√
π

+
σ2
q

√
2√

π(σ2
µ+2σ2

q)
J1 + µµ − 2µµJ2 +

2σ2
µ√

σ2
µ+2σ2

q

J3 = 1√
π

(
σq +

√
σ2
q + σ2

µ

)
.

Variances by Investor Group

Consider the groups g = SL,UL of sophisticated and unsophisticated in-
vestors who learn about asset i. These groups differ in their capacities only. A
particular investor j in group g holds qji = e2Kg(sji−rpi)/ρσ2

i . The cross-sectional variance
of holdings for this group, conditional on the realized shocks, is(
σgqi

)2
=
(
e4Kg

ρ2σ4
i

)
V ar (sji − rpi) = e2Kg−1

ρ2σ2
i
.

The cross-sectional mean is

µgqi =
(
e2Kg

ρσ2
i

)
E (sji − rpi) = e2Kg

1+φmi
(x+ νi) + e2Kg−1−φmi

ρσ2
i (1+φmi)

εi.

The expected value of mean of holdings is µgµi = e2Kg

1+φmi
x and the variance of mean holdings

is(
σgµi

)2
=
(

e2Kg

1+φmi

)2
σ2
x +

(
e2Kg−1−φmi

1+φmi

)2
1

ρ2σ2
i
.

Consider the group NL of investors who are not learning about asset i.
All investors in this group hold the same quantity qji = µqi = (z − rpi)/ρσ2

i . Hence(
σNLqi

)2
= 0 and µNLqi = 1

ρσ2
i

(z − rpi).

The mean and variance of mean holdings are

µNLµi = x
1+φmi

and
(
σNLµi

)2
=
(

1
1+φmi

)2
σ2
x +

(
φmi

1+φmi

)2
1

ρ2σ2
i
.
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Consider the assets with zero learning, ZL. For assets that are not learned about
by anyone (mi = 0, φmi = 0), all investors hold qji = µqi = (z − rpi)/ρσ2

i . Hence(
σZLqi

)2
= 0 and µZLqi = 1

ρσ2
i

(z − rpi).

The mean and variance of mean holdings are

µZLµi = x and
(
σZLµi

)2
= σ2

x.

Proof of Proposition 5. First, average volume of active investors, g = SL,UL, is

V
g

= 1√
πρ2σ2

i

[
√
e2Kg − 1 +

√
e2Kg − 1 +

(
e2Kg

1+φmi

)2
ρ2σ2

i σ
2
x +

(
e2Kg−1−φmi

1+φmi

)2
]

V
g

is increasing in Kg hence V
SL

> V
UL

.
Next, average volume of passive investors in actively traded assets is

V
NL
i =

σNLµ√
π

= 1√
πρ2σ2

i

√(
ρσiσx
1+φmi

)2
+
(

φmi
1+φmi

)2
.

Using
√
a+
√
b >
√
a+ b,

V
UL

> 1√
πρ2σ2

i

[√
2 (e2K2 − 1) +

(
e2K2

1+φmi

)2
ρ2σ2

i σ
2
x +

(
e2K2−1−φmi

1+φmi

)2
]

= 1√
πρ2σ2

i

√
(φmi)

2(2e2K2−1)+2φmi(e2K2−1)+(e4K2−1)
(1+φmi)

2 +
(

e2K2

1+φmi

)2
ρ2σ2

i σ
2
x

> 1√
πρ2σ2

i

√
(φmi)

2

(1+φmi)
2 +

(
1

1+φmi

)2
ρ2σ2

i σ
2
x = V

NL
i .

Hence for i ∈ {1, ..., k}, V SL
i > V

UL
i > V

NL
i .
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